Elastic Frame Protocol - an open-source alternative
to MPEG-2 TS

Torbjorn Einarsson
Edgeware
Agile Content S.A.
Stockholm, Sweden
torbjorn.einarsson @edgeware.tv

Abstract—This paper discusses the new open-source Elastic
Frame Protocol (EFP) and compares it with MPEG-2 Transport
Stream (TS) with regards to protocol overhead, timeline and time
stamps, error detection and recovery, (de)multiplexing, complex
transport architectures, flexibility and use in modern packet-
based transport architectures.

MPEG-2 TS has the advantage of being almost universally
supported in broadcast media transport, but EFP was found
to provide significantly lower overhead, 64-bit timestamps and
much better possibilities to detect and correct packets that are
delivered out of order.

Index Terms—MPEG-2, transport stream, EFP, video

I. INTRODUCTION

Video and audio media already constitute the majority
of all traffic transported over the internet, and their share
continues to grow. They are typically transported compressed
into a bit stream format in order to reduce the transport and
storage requirements. When transported over a link there is
more information needed in order to identify, describe and
synchronize the elementary media streams, and this is often
handled by a multiplexing protocol. The multiplexing protocol
is responsible for aggregating a number of substreams such
as video, audio, and subtitle tracks into a single stream, and
for adding metadata into this aggregated stream that identifies
and describes the constituent substreams as well as how
they relate to each other, e.g. regarding timing. There are
multiple such protocols originating from different use cases
and the technology possibilities and needs at the time when
the protocols were conceived.

This paper investigates two such multiplexing protocols,
the omnipresent MPEG-2 Transport Stream (TS) [1] protocol
and a modern lean protocol called Elastic Frame Protocol
(EFP) [2] that was developed in the context of an efficient
low-delay link protocol. The focus of this investigation is on
the area of contribution/broadcast media transport, where low
and predictable latency is required, and error detection and
recovery is important.

MPEG-2 TS is a protocol for multiplexing elementary
media streams into a format that is suitable for transport. It
was first specified in 1995 in the standard ISO/IEC 13818-
1 [1], the systems part of MPEG-2, as well as in the ITU-
T H.222 specification [3]. As will be discussed further, the
design choices made at that time affect its use negatively today.
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EFP is an attempt to design a multiplexing protocol that
matches today’s conditions of media transport over the Internet
using modern low latency network resiliency protocols and
avoids as much unneeded complexity as possible in its specifi-
cation. It takes the approach of an open-source implementation
rather than a standards-body-driven specification.

Today, IP transport is used everywhere with a strong
tendency to build reliable or semi-reliable protocols on top
of UDP instead of TCP in order to better control limited
delay and out of order delivery. For general purpose data,
the IETF QUIC protocol [4] is an example of this. For
contribution/broadcast media transport, two such open pro-
tocols are Secure Reliable Transport (SRT) [5] and Reliable
Internet Stream Transport (RIST) [6]. They both provide a
way of combining semi-reliable transport (attempt to recover
lost packets up until a deadline) with a fixed end-to-end
latency. They are today typically used to transport MPEG-
2 TS streams, but are designed to be content agnostic and can
therefore also be used to transport EFP streams.

II. DESIGN CONSIDERATIONS AND DECISIONS

Each of the multiplexing protocols MPEG-2 TS and EFP
have a design that is highly influenced by the intended use at
the time of their conception. This section will discuss these
conditions and the design decisions that were taken as a result.

A. MPEG-2 TS

The MPEG-2 Transport Stream is specified in the MPEG-
2 Systems standard which was developed in the first part of
the 1990’s. In some aspects, it built upon MPEG-1 Systems
which was developed with a focus on making it possible to
store MPEG-1 progressive video in SIF resolution (352x240
or 352x288 pixels for NTSC and PAL respectively) and play
it from a disc.

MPEG-2 video focused on digital SDTV which has twice
the resolution of SIF and is interlaced. MPEG-2 Systems
contain both Transport Stream (TS) and Program Stream (PS)
and in both cases the actual video and audio samples are
framed in Packetized Elementary Stream (PES) packets. The
PES packets may have both a Presentation Time Stamp (PTS)
and a Decode Time Stamp (DTS). The range and time scale
of these timestamps were inherited from MPEG-1 systems to



be 33 bits at 90kHz, which means that they will wrap around
approximately every 26.5 hours.

At the time when MPEG-2 TS was conceived, IP transport
of media was at its infancy, and the focus was on error-
prone channels with constant delay, such as virtual circuit
switched Asynchronous Transfer Mode (ATM) networks. The
basic building block of a TS stream is the MPEG-2 Transport
Stream Packet. It always starts with a 4 byte header and has a
length of 188 bytes. This length was chosen to harmonize with
the ATM cell payload size. Effects of this early environment
can also be seen in the fixed sync byte at the start of every
MPEG-2 TS header, and various check-sums in mandatory
metadata.

In MPEG-2 TS, the elementary media streams are pack-
etized into PES packets, which carry one or more samples
of the media. For video, a PES packet typically carries one
video frame or field, while for audio there may be more than
one frame’s worth of audio samples in a single PES packet
in order to achieve lower packetization overhead since audio
in general uses much less data than video. The PES packets
are the actual payload of the MPEG-2 TS packets, and a
flag called “payload_unit_start_indicator” in the MPEG-2 TS
packet header signals that a PES packet starts in that particular
TS packet.

Furthermore, the PES packets have a PES header starting
with a three-byte start code to make it possible to find the PES
start even if some packet is missing, or if the PES packet starts
in the middle of a TS packet. The mentioned mechanisms
make it possible to send a MPEG-2 TS stream without a
compatible packet framing, since it is possible to search and
find the starts of TS packets and PES packets by looking at
byte patterns. However, when using a packet based framing
such as UDP or protocols on top of UDP like SRT and RIST
the need to handle misaligned or partial packets is not an issue,
and such mechanisms can be removed.

Another child of its time is the handling of timing and
time stamps in MPEG-2 TS. At the time, it was very hard
to synchronize clocks between sites, so MPEG-2 TS carries a
System Time Clock (STC) timeline via 42 bit (27MHz) PCR
(Program Clock Reference) time stamps. The PCR time stamps
are intended to be used to generate a receiver STC that does
not drift relative to the sender STC. The PTS and DTS time
stamps relate to the PCR time stamps. Not only PTS and DTS
but also PCR wraps around after roughly 26.5 hours.

A further restriction is a strict buffer model which was
invented to support hardware decoders and set-top-boxes with
very small amounts of buffer memory. The standard defines a
theoretical system target decoder (T-STD) and a leak or Video
Buffer Verifier (VBV) model which should be used to schedule
the TS media packets and insert TS stuffing packets in order
to neither underflow nor overflow the receiver buffer.

B. EFP

The work on EFP was started in 2020 with the aim of
creating a lean protocol to be transported only over packet
networks. The sender determines the packet content and its

length, and the receiver should receive the same data as a
packet with the same length. To avoid segmentation by the
network transport layers, the Maximum Transmission Unit
(MTU) should be known and used. For Ethernet packets, the
MTU is 1500 bytes, but with IP, UDP, SRT or RIST headers,
the actual payload MTU may be substantially smaller.

Some concepts in the MPEG-2 TS specification that are not
relevant to include in EFP, and therefore allows EFP decreased
complexity and overhead, are:

« the System Time Clock and PCR

o the header sync word and PES start code

EFP also improves on a number of concepts, as listed in
table 1

TABLE I
FIELD RANGES
Field MPEG-2 TS EFP
Timestamp 33 bits cyclic 64 bits monotonic
Counter 4 bit cyclic 16 bits fragment
16 bits superframe
Payload size | 16 bits (O for video) | 16 bits per fragment

The EFP notion corresponding to an MPEG-2 PES packet
is called a Superframe. However, a superframe is not carried
inside transport packets as in MPEG-2 TS, but is instead built
from fragments which are the transport units in EFP. The
fragment sizes are not fixed, and there are different types, so
the two layers of PES and TS packets are in EFP replaced by
one layer of fragments.

There can be up to 256 types of EFP fragments, but
currently there are three that are most important and listed
in Table II.

TABLE II
EFP FRAGMENT TYPES
Type | header size (bytes) description
1 8 regular media fragment
2 28 end of superframe incl. time stamps
3 10 regular media fragment with size

A sequence of one or more fragments of different types
builds up a superframe that carries a media frame. The last
fragment is of type 2 and carries the timing information
corresponding to the PTS/DTS time stamps in PES headers
for MPEG-2 TS.

Since the fragments have variable size, they can fill out the
full MTU if there is enough data. For example, if the MTU is
1450 bytes, a video frame of 10 000 bytes can be split into 6
fragments carrying 1442 bytes of payload and an 8-byte (type
1) fragment header followed by a last fragment containing
the remaining 1348 bytes of payload together with a longer
28-byte (type 2) fragment header containing timestamps and
substream information.

For smaller payloads, such as signaling data, or trailing
bytes of a media frame, it should be possible to pack different
substreams into the same MTU-size transport packet, by using
other fragment types like type 3.



III. COMPARISONS
A. Protocol Overhead

All protocols add overhead in some form, such as fixed
size headers per packet, padding up to required package sizes,
or content specific metadata inlined in the stream for identi-
fication and synchronization. When comparing the overhead
of multiplexing protocols, there is also a need to factor in the
environment in which they will be used. This paper is focused
primarily on the environment of broadcast media transport
over IP and unreliable networks such as the Internet, so the
underlying transport protocols will add fixed size headers for
each Ethernet packet that is put on the link, as listed in Table
III. Secure Reliable Transport (SRT) [5] is a network resiliency
protocol commonly used to protect streaming media over the
internet.

TABLE III
HEADER SIZES

Protocol | Header size (bytes)
Ethernet 14

1Pv4 20

UDP 8

SRT 16

It is clear that to keep the relative overhead added by these
transport headers low, it is beneficial to utilize as much as
possible of the payload MTU. Ethernet can carry a payload
of 1500 bytes, which gives an MTU of 1456 bytes after [Pv4,
UDP, and SRT headers are added as can bee seen in Table III.

MPEG-2 TS packets are always 188 bytes long but typi-
cally several are aggregated into one IP packet to minimize
overhead. The maximum is 7 TS packets constituting a total
payload of 1316 bytes. Since EFP does not use fixed size
fragments, the fragments are able to fill the full 1456 bytes that
is the maximum payload size, and thus have a lower relative
overhead. On the other hand, EFP does not currently put more
than one Superframe in an IP packet, so in the case of very
short Superframes such as for low-latency audio, where the
payload is typically in the range of a few hundreds of bytes,
the per-Ethernet-packet overhead ratio will be higher.

The fixed size nature of the MPEG-2 TS packet at 188 bytes
with 4 bytes header means that if the PES packet size is not
divisible by 184, the last TS packet of the PES packet will
need to be padded, at least if the PES packet start should be
aligned with a TS packet start and not wait until there is data
from the next media sample/frame. For video, each frame or
field is typically a PES packet, so for a 50 frames per second
video there are 50 PES packet endings per second that need
to be padded to a 184 byte multiple. For audio the PES packet
frequency is typically in the same area (46.8 PES packets per
second for 48kHz AAC-LC, for example). Thus the relative
impact of this padding is completely dependent on the size of
the PES packet. For audio, each PES packet typically contains
a large amount of audio samples, as in the case of AAC where
1024 samples are in each PES packet. At 48000 samples per

second, this represents about 21 ms of audio. As a theoretical
example, let us assume that audio is encoded into AAC at
128 kbps and the resulting PES packets are 379 bytes large.
Dividing this into 184-byte units that constitute the MPEG-2
TS packet payload, the result is two full TS packets and a third
TS packet with 11 bytes from the end of the PES packet and
173 bytes of padding. That is 173 bytes of padding added to a
379 bytes long PES packet, an additional 45.6% of overhead
on the AAC coded audio stream! However, this should be put
in relation to the fact that audio bit rates are generally a small
part of a stream compared to the video part. One way to reduce
the relative impact of padding would be to avoid aligning the
PES packet start with the TS packet start, but that would entail
waiting for the next PES packet before sending the TS packets
off, which would incur an extra 21 ms of latency.

Traditionally MPEG-2 TS streams have been sent using a
constant bit rate (CBR), and to achieve this from non-constant
elementary streams the multiplexer would add padding in the
form of null packets to the TS stream. This was also a source
of overhead, typically in the range of 5-10%.

In addition to theoretical discussions on protocol overhead,
an experiment was executed to measure the protocol overhead
of MPEG-2 TS and EFP when multiplexing a stream consist-
ing of one video and one audio stream. The audio and video
sources contained random noise. To achieve a reproducible
result, we have used FFmpeg to generate H.264 video at 50
frames per second at a series of different bit rates, while
keeping the bit rate of the AAC-LC audio constant at 96kbps.
In the script, see Listing 1, the bit rate in kbps is represented by
$1 and is varied from 500 to 20000 in steps of 500, while the
buffer size is represented by $2 with the value $2 = 1.5 * $1.

Listing 1. ffmpeg script to generate data
ffmpeg \
—f lavfi \
—1 nullsrc=s=1280x720:rate=50 \
—filter_complex \
”geq=random (1)*255:128:128;\
aevalsrc=-2+random (0)” \
—c:a aac -b:a 96k —ac 2 —ar 48000 \
—c:v 1libx264 -preset medium -b:v $1k \
—-minrate $1k —-maxrate $1k —bufsize $2k \
—-x2640pts "no—scenecut: keyint="50":\
min—keyint="50":nal —hrd=cbr:\
no—open—gop=1:force—cfr=1:aud=1" \
-y —f mpegts —t 25 rnd. ts

The result is shown in Fig. 1. The x-axis shows the video
bit rate, while the y-axis shows the payload overhead which
is calculated as

media bytes + protocol bytes 1

load head =
payload overhea media bytes

media bytes = video payload + audio payload

Since all video and audio frames have time stamps and
other sample information, the overhead is higher for lower
bit rates. For MPEG-2 TS, there is also a high relative
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Fig. 1. Payload overhead per protocol

overhead from stuffing the end of each frame. As the bit rate
approaches higher values, the payload overheads converge to
the asymptotic values where the frame endings are negligible
and the overhead can be calculated as

. header size
asymptotic overhead =

packet size — header size

which results in the values in Table IV.

TABLE IV
ASYMPTOTIC OVERHEAD
Protocol Packet size | Header size | Asymptotic
(bytes) (bytes) overhead
MPEG-2 TS 188 4 ~ 2.2%
EFP 1450 8 ~ 0.55%

In the above, other effects like stuffing to constant bit rate
and the headers of the transport packet layers have not been
considered, but it should anyway be clear that it is possible
to lower the overhead substantially by using a more modern
protocol like EFP compared to MPEG-2 TS.

B. Time stamps and clock consistency

As stated in section II, MPEG-2 TS have 33 bit timestamps
for PTS and DTS, at a frequency of 90 kHz, and therefore
wraps around every 26.5 hours. This makes the absolute values
of the timestamps arbitrary and prohibits a monotonically
increasing absolute time line. EFP uses a 64 bit timestamp
which can be used to carry International Atomic Time (TAI),
a monotonic absolute time. The interpretation of the timestamp
in EFP is not specified in the protocol, which is both a
weakness and a strength. For interoperability purposes, a fixed
definition would have been useful, but leaving it implementa-
tion defined allows for multiple different uses. In particular,
one can choose a timescale that avoids the MPEG-2 TS issue
that the DTS values for 59.94 frames/s video increase by
1501.5 ticks in average, resulting in fluctuating DTS step sizes.

By using 180kHz, the DTS steps increase evenly by 3003 for
each frame. With an monotonically increasing timeline and
constant DTS step, one can also make a direct translation to
and from MPEG DASH live streams [7] with ISOBMFF [8]
segments since they have a monotonic clock 64-bit resolution.
Having a constant DTS step translates into a constant sample
duration in the ISOBMFF fragments which allows for less
overhead by conveying the sample duration as a default value
in the Track Fragment Header box.

In MPEG-2 TS, the PCR timestamps are, as described in
section II, intended to be used to recover the sender clock
in the receiver, but this puts rather tight requirements on the
sender and receiver hardware, as well as the jitter character-
istics of the channel, as the more jitter that the PCR samples
are subjected to over the link, the harder it becomes to recover
the STC. There are requirements in the specification on PCR
jitter and accuracy that are very difficult to comply with using
software implementations and when transporting over public
internet. EFP instead expects the clocks in the communicating
nodes to be synchronized using some external method, such as
Network Time Protocol (NTP), Precision Time Protocol (PTP)
or some custom time synchronization protocol. There is also
a fragment type (type 0) defined in EFP that can be used for
building such a custom synchronization protocol. This removes
a large amount of complexity compared to the MPEG-2 TS
specification.

C. Error Detection and Recovery

Table I lists the bit width of the packet counters in MPEG-
2 TS and EFP. For MPEG-2 TS each elementary stream has
its own 4-bit wide continuity counter corresponding to 16
possible values. It can often (but not always) be used to detect
that some amount of data has been lost, but reassembling
a stream with out of order or duplicated packets is very
hard, if not impossible, to do in a reliable way. The fact
that up to 7 TS packets from different elementary streams
can be combined in each UDP packet only complicates these
operations. Therefore, for transporting TS over UDP there is
often an extra layer of protocols such as RTP [9] added to
get a sequence number for the whole set of 7 MPEG-2 TS
packets. However, the RTP header adds another 12 bytes of
overhead and only carries a 32-bit timestamp, so it is not an
optimal solution.

EFP on the other hand, as can be seen in table I has a
16-bit counter for superframes and another 16-bit counter for
fragment within a superframe. This allows for clear identi-
fication of exactly how much data was lost, and for sorting
out duplicates and reorder out-of-order packets. In fact, EFP’s
frame numbering and timestamps makes EFP alone go beyond
what MPEG-2 TS + RTP achieve together. As a bonus, using
the EFP frame numbering it is also possible to insert a thin
layer between EFP and the transport stack to do multi-path
delivery with either duplication of all packets over several
separate paths or distributing the stream over several channels
in such a way that one larger combined channel is created. This
is possible since identifying each packet uniquely is trivial.



D. Descriptive metadata

In MPEG-2 TS, the Program Association Table (PAT) and
Program Map Table (PMT) are periodically repeating metadata
that acts as a table of contents for the transport stream. The
reason for them repeating regularly is that a receiver shall be
able to start parsing the stream at any point, without having
to communicate with the sender, and within a reasonable
amount of time be able to determine the contents of the stream.
The repetition rate is system dependent, but in Digital Video
Broadcasting (DVB) the requirement is once every 500 ms
[10]. This table-of-contents metadata contains information on
all the programs in the transport stream, and all elementary
streams in each program. For each type of elementary stream,
there are separate specifications that define descriptors, data
structures that can be quite lengthy, that also go in the PMT.

EFP also has a method for transporting this kind of table-
of-contents metadata. It can be sent in-band in the stream,
but taking advantage of modern duplex based communication,
can optionally instead be communicated out-of-band using
web sockets. If transported in-band, it can be repetitive or
only triggered on changes in the stream. Taking even more
advantage of the duplex functionality, EFP has also added the
possibility to communicate to the sender filtering settings so
that not all content is sent over the link. One weakness of
EFP in relation to MPEG-2 TS is that while many elementary
stream specifications already contain information on how to
map them into MPEG-2 transport streams and exactly what
the descriptors shall contain, EFP has a more limited set of
streams and descriptors as of now.

IV. POSSIBLE IMPROVEMENTS OF EFP

EFP is a new protocol and not all parts have been deployed
and used yet. It is defined by its open source code, and the
documentation is not fully aligned with the latest changes to
the protocol.

As has been shown above, the overhead is relatively low, but
by introducing more types of fragments, one could optimize
for more cases, and provide even lower overhead.

Some parts that could be further improved with little efforts
are

« signaling of the time scale and type of reference

« change the code to use network byte order

« the total fragment count could be removed saving 2 bytes
from type 1 and type 2 fragments

« versioning of the protocol

V. CONCLUSIONS

MPEG-2 TS is nearly ubiquitous in the broadcast media
transport world, and that is its main strength, the fact that
almost all equipment can handle it. However, in modern
packet switched software based environments, it does suffer
from a number of inefficiencies and the full specification is
seldom strictly adhered to any longer. EFP offers a number
of improvements that align better to the modern reality, but
interoperability is its main weakness at this point.

This paper identified the following advantages in using EFP
over MPEG-2 TS:

« significantly lower protocol overhead verified through
theoretical reasoning and through experiments

o monotonically increasing timeline with 64-bit time-
stamps compared to 33-bit cyclic timestamps

« repair of out-of-order packet delivery using dual 16-bit
instead of 4-bit counters

The EFP protocol is new and not as mature as MPEG-2
TS, but since it is available as open source code it can be
used and improved freely and simply together with SRT or
RIST to achieve a better media transport link between two
nodes.
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